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Abstract
Sifting through millions of pages from thousands of company documents to extract and
meaningfully compare Environmental, Social, and Governance data is an exceptionally chal-
lenging task for professional investors. In this short paper, in a practitioner-talk inspired
fashion, we share some of the Machine Learning journey Integrum ESG undertook to solve
this challenge and how a blend of human and artificial intelligence allowed us to become the
only ESG risk rating provider to deliver completely transparent and always up to date ESG

risk analysis and Impact data.
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1 Introduction
The current standard for companies publishing
ESG information is for them to include it in their
annual sustainability reports. In the absence of
mandated or agreed reporting standards these are
largely in unstructured text, usually a PDF doc-
ument. If reading thousands of company reports
is not something humans can nor want to do, it
still is a tractable Machine Learning (ML) problem
when using modern technology.

As they have been guiding our ML journey, it
is important to understand the principles at the
core of Integrum ESG’s risk ratings. For every
metric, our aim is to provide a “glass-box” i.e.
to provide our clients with all the underlying
data motivating the risk analysis score as well as
the companies relative performance compared to
their peers. To translate these principles into an
ML development roadmap, we have focused our
work on models’ explainability and robustness
using innovative Human-in-the-loop and data-
centric AI methodologies.

To ensure the best possible data quality for our
clients, the Integrum ESG research analysts team
review every relevant data point before it is sent
out to our proprietary dashboard. This process
had a two-fold impact on the ML work. First,

we wanted to integrate the analysts’ review in
the modelling process. Essentially, we wanted to
make sure our model could automatically refine
its prediction based on the analyst-provided feed-
back, just like a Data Engine. The second and most
crucial impact was that we needed to develop a
model that was capturing most, if not all the
relevant ESG data – potentially at the cost of in-
cluding some irrelevant text. Think about an x-ray
scanner at the airport, a failure to detect a firearm
outweighs the inconveniences of performing sec-
ondary inspections. In other words, the cost of a
type I error is negligible compared to a type II
error. Our use case works in the same way: it is
easier for financial analysts to discard irrelevant
text than it is for them to sift through hundreds
of pages to find relevant data which, in essence,
is the initial challenge ML is meant to be solving.
Type I and type II errors being concepts generally
used in statistical hypothesis testing rather than
ML, we will consider adjacent, but not identical,
more traditional ML metrics, to express these con-
cepts and evaluate our model: recall and precision.

The scope qualitatively described in this intro-
duction is the basis for the work supporting the
latest version of the ESG text relevancy classifier
we introduce in this paper. The model currently
deployed achieves a recall of 0.98 on average on
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public companies’ annual reports, ensuring an ef-
ficient workflow for the analyst as well as solving
the challenge which motivated the model devel-
opment in the first place. The control of the
precision is an ongoing area of research at Inte-
grum ESG and is currently around 0.70.

Topics: ESG Data, Data Centric AI, Active learning,
Data Engine, Word and Sentence embeddings, Re-
call and Precision, Surrogate Cost functions

2 Building an ESG Classifier
In this section we describe the bootstrapping
journey undertook to develop an original ESG
text classifier through selected ML research top-
ics we hope the reader will find interesting. As
previously described, the classifier takes as input
some English text and highlights sections and
sentences of the text relevant to Environmental,
Social and Governance (ESG) metrics as defined
by Integrum ESG in accordance with the frame-
works set out by the Sustainable Accounting
Standards Board (SASB).

This is an inherently supervised task, and, in the
context of this paper, we will treat it as a bi-
nary matter - the text is or isn’t relevant to an
ESG metric. This way of understanding the prob-
lem unveils its highly imbalanced nature. Indeed,
text is usually not about ESG and as such having
a dummy model always predicting non relevant
to ESG would probably be correct in most cases.
This is not completely unheard of in ML - think
about automatic credit card fraud detection for
example, where only a very limited portion of the
transactions are genuinely fraudulent – but cer-
tainly calls for adapted methodologies. Imbalance
can commonly lead to uneven costs of False Neg-
ative and False Positive misclassifications, which,
as described in Section 1 is the case for us.

The imbalance alongside our preference for re-
call over precision was the main challenge and
driver for our technology choices. As such, the
panorama made in this section will revolve
around their impact on each building blocks of the
model.

2.1 The Importance of Data
Data is the foundation of any ML system and even
with the best intentions a model won’t perform

if the data is not appropriate for the use case -
let it be issues with quality, quantity, distribution
shifts, leaks, etc - as the colloquial saying goes
“garbage in, garbage out”. Unfortunately, it is very
common for ML practitioners to overlook the im-
portance of data and to adopt a model-centric
approach to building ML system when ten of the
most-used ML tests sets still have pervasive label
errors [1].

We want to take the opportunity of this practi-
tioner paper to delve into our approach to getting
data but also to switch paradigms from a model-
centric approach to a data-centric approach and
remind the reader that real-world data is usually
messy and shouldn’t be treated as fixed - improv-
ing models is not the only way to get better
performance [2].

To build a binary classifier, we needed sentences
in English labelled Relevant or Not Relevant to a
specific ESG metric. We started with small hand
curated datasets of a couple thousands data points
so that we could train a first version of the model.
Manually annotating data has its own set of chal-
lenges, especially when it has to do with detailed
specialist knowledge. There are risks associated
with human annotations - they can click the
wrong button, have a difficult sentence to classify
or even disagree with another reviewer. These
inconsistencies introduce label noise which ulti-
mately has an impact on the model’s confidence
in a prediction.

Potential human errors aside, building hand-cu-
rated datasets was not a sustainable way to collect
a database worth of text covering relevancy con-
tent for over 30 ESG metrics from hundreds of
reports – essentially this meant reading and an-
notating millions of pages which, again, is what
ML is meant to be solving. This first set of small
datasets allowed us to train simple models tuned
for recall and which we put to work on new data
to annotate thousands of sentences a day. At that
stage, the very limited amount of data we had,
translated in a bottleneck at training time which
resulted in a simple logistic regression having
the same performance as a fine-tuned Long Short
Termed Memory (LSTM) net. Obviously, using la-
bels generated by another model is the recipe to
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reinforce bias and errors of the initial weak mod-
els. This meant we needed a systematic way to
ensure that every label generated was checked.

We broke down the work in two streams, one for
each of label. First, we started working on the Rel-
evant labels as our initial hand-curated datasets
had very little relevant ESG content. Indeed, the
human annotation process included some special-
ist vocabulary carefully selected but most of the
annotation had been done through the traditional
work of an ESG financial analyst i.e. reading
a report and looking for relevant ESG content.
Following our principle of reviewing every data
point before it’s sent out to the dashboard, every-
thing labelled Relevant by the first version of the
model was stored in descending order of predic-
tion confidence for secondary inspection by an
analyst. In their first instance, the models being
tuned for recall, they initially returned most sec-
tions of the reports which was too much for a
secondary inspection. To bring the number down,
we implemented a Regular Expression filtering
process which boiled down to automatically ex-
cluding from the secondary review any sentence
labelled Relevant with no ESG keywords from a
curated list. This allowed us to carry an inten-
sive but tractable secondary review on a reduced
set. The result of each review was automatically
fed back to the model for regular retraining, ef-
fectively creating a Human-in-the-loop process.
Ultimately this allowed to grow a controlled data-
base of relevant ESG content and to get the
average recall above 0.80 for all but five metrics
with a tolerable precision just above 0.5.

Confident Learning. However, this didn’t solve
the fact that a growing collection of text labelled
Not Relevant was accumulating with no safe-
guards. It meant two things, (1) some data points
that were initially labelled as Not Relevant by
early versions of the model could have been rele-
vant, but also (2) that all the content that had been
excluded from the secondary review was slowly
creating a latent bias by teaching the model to
look for keywords from the curated list, effec-
tively creating a clever word matcher. The models
started very disjointed prediction sets with either
very high or very low relevancy probabilities.
This eventually resulted in a weakened Human-

in-the-Loop process as less and less useful to
disambiguate uncertain predictions were surfac-
ing.

To tackle the labelling checks of terabytes’ worth
of irrelevant text, we started reflecting on what
ultimately can be the cause of the model’s uncer-
tainty on a given data point. Generally, there are
two main recognized sources for a model’s lack
of confidence on a prediction. One is the model’s
inability to make sense of a data point, and the
other is linked to label noise introducing uncer-
tainty in the prediction.

To disambiguate uncertainty sources, we need
to make assumptions on label noise for which
we give a short theoretical explanation inspired
from [3]. Let’s start by introducing two useful
notations: ̂𝑦 is the observed, potentially noisy, la-
bel and 𝑦⋆ is the unobserved ground truth. We
can write the probability for a certain model 𝜃
to predict 𝑖 given a data point 𝑥 as follows:
̂𝑝( ̃𝑦 = 𝑖|𝑥, 𝜃). This probability expresses both

types of uncertainty as it depends both on the
model and the data. To disambiguate them, the
probability cannot depend on the data 𝑥.

The simplest possible systematic assumption we
could make on label noises is that they are uni-
form [4] i.e. observing label 𝑖 when it was in fact
label 𝑗 is just as frequent as swapping label 𝑙 to
label 𝑗 for example. Which essentially mean that
swapping the label cow to bull is just as frequent
as swapping the label plane to bull – not applica-
ble to a real work scenario.

Another systematic assumption is to as-
sume a class conditional label noise [3]
 which, using previous notations, simply means
𝑝( ̃𝑦|𝑦∗, 𝑥) = 𝑝( ̃𝑦|𝑦∗). The label noise is not in-
stance dependent and depends on the class which
is a reasonable assumption to make in our case.
Indeed, regardless of the specific text, in general
something labelled relevant to GHG emissions has
a higher probability to be swapped to a label rel-
evant to climate stability than to be swapped to a
label relevant to labour practices.

So why are we interested in this assumption?
Confident Learning (CL) is built on the Class con-
ditional assumption. We recommend reading [3]
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 to get a full grasp of CL but, essentially CL fo-
cuses on systematically estimating label quality
based on estimates of the joint distribution of ob-
served labels and ground truth labels 𝑝( ̃𝑦|𝑦∗) i.e
label noise, using out-of-sample predicted prob-
abilities ̂𝑝( ̃𝑦 = 𝑖|𝑥, 𝜃) and the associated vector
of observed labels ̃𝑦 =. Building on an unnormal-
ized estimate of the joint distribution matrix for
𝑝( ̃𝑦|𝑦∗), we pruned our entire database of text
(both Relevant and Not Relevant) by probability
ranking - which is robust to class imbalance [3].
Using CL allowed the discovery of interesting
mislabelling patterns such as very similar frag-
ment of texts labelled both as Relevant and Not
Relevant because of a single word failing the Reg-
ular Expression matching.

CL had a very noticeable impact on the mod-
els’ predictions. Following retraining on the
improved data, precision went up by 15% on av-
erage with a slightly increased recall (c. 3%). As
mentioned before the models had shifted to very
confident probabilities for most predictions - usu-
ally above 85% or under 5% - which stopped after
retraining on the new datasets and allowed the
effective Human-in-the-loop process to resume.
This is arguably the most interesting impact CL
had.

2.2 Text Representation
To get processed by a model, text needs to be con-
verted into numerical vectors while preserving
the initial meaning of the sentence. Finding the
appropriate text representation for our use case
has been pivotal in our ML journey.

Just like for the datasets, choosing an appropri-
ate text representation was heavily influenced by
our preference for recall under our imbalance
scenario. Early versions of the datasets being
keyword driven, as described in Section 2.1, we
turned our attention to retrieval technologies.
Term Frequency – Inverse Document Frequency
(TF-IDF), perhaps surprisingly given its relative
simplicity, has proved itself to be particularly
robust and well-suited to our use-case for two
reasons. First, TF-IDF simply assigns a weight to a
word based on a product between its frequency in
a document and its rarity across the entire corpus.
In our case, terms associated with the Relevant

to ESG text fragments occur infrequently across
the entire collection of company reports which
make them stand-out. The second argument for
using TF-IDF was linked to its inherent sparsity
which makes resulting embeddings easy to ma-
nipulate and RAM-efficient in their compressed
sparse row matrix form [5].

However, in conjunction with the Regular Ex-
pression filter we presented in Section  2.1
- which we replaced with Confident Learning,
TF-IDF representations became heavily reliant on
some of the ESG-related keywords which only
reinforced their inability to capture semantic
relationships. A sentence like The creative and col-
laborative environment of the Lab inspired many
innovative ideas among the PhD students and we
are pleased to provide an in-depth ESG disclosure
that encompasses our efforts to mitigate operational
impact on the environment would get very similar
representation.

To solve these issues, we initially decided to move
away from TF-IDF completely. We tried vari-
ous more complex technologies such as shallow
neural nets (Word2Vec, etc.) which we appreci-
ated for their ability to consider a sliding window
of context words as they iterate over the entire
report but also for the possibility to fine-tune
them on an ESG specialised vocabulary - which
unsettled most raw off-the shelves options. Un-
fortunately, this didn’t produce the results we
were hoping for as it simply swapped 10% in re-
call for 10% in precision.

We were initially reluctant to continue using re-
trieval technology through a 2-stage model (i.e.
one model, using TF-IDF, would focus on recall
and generate a sparse set of candidate proposals
for a second more subtle model designed to get
a higher precision) as, when using messy real-
world data, this tends to simply propagate errors
[3]. However, as we were getting more confi-
dent about the quality of our datasets thanks to
the Confident Learning work undertook, we felt
that we could reintroduce some retrieval technol-
ogy through a voting scheme. A voting scheme
is the combination of the predictions of multi-
ple models, usually using a derived version of
majority voting. However, in imbalanced scenar-
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ios, like ours, where models might be tuned
for a specific evaluation metric, raw predictions
from individual models usually don’t accurately
represent the genuine likelihood of a label. For in-
stance, a model tuned for recall will output higher
probabilities on average than a model tuned for
precision which means that a simple majority
vote would simply propagate these inaccuracies.
To correct the skewed probability distributions,
we calibrated the output of each individual model
in the voting scheme using an isotonic regression
to bring their predictions in line with a more
accurate depiction of the relevancy of each text
fragments. Using the voting scheme, our exper-
iments with more complex text representation
techniques gave a noticeable increase in precision
while holding the recall score. Coupled with the
retrieval abilities of TF-IDF, we noticed that BiL-
STM architectures designed for translation [6]
helped in getting precision from 0.575 on average
to 0.65 while getting recall above the 0.90 mark.

Models designed for translation can capture nu-
anced semantic relationships as they have been
trained on a translation task using a parallel cor-
pus but will fail at holding recall, which is our
argument for designing a voting scheme. This
typically translate in a greater ability to use the
context of a sentence to make a prediction and
as such to rely less heavily on keywords and
avoid simple mistakes such as representing, “The
creative and collaborative environment of the Lab
inspired many innovative ideas among the PhD
students” and “we are pleased to provide an in-
depth ESG disclosure that encompasses our efforts
to mitigate operational impact on the environment”
in similar ways. There is no denying, that more
context awareness is the next step for our models
to progress further and get a boost in precision.
However, we were surprised that more advanced
technologies would still need the support of a 50-
year-old technology to fulfil our use-case even
on clean and controlled text fragments. We argue
that one of the reasons for this is the size of the
vectors used to represent text fragments. Indeed,
newer models squeeze their text representation in
small, pooled vectors. For instance, Meta’s LASER
represents any sentence in a 1024-element vector
when TF-IDF dictionaries fitted to our database

usually performed best with vectors of over 10000
elements. Admittedly, TF-IDF is not particularly
robust to inputs noise and pooling contributes to
efficiently reducing the dimensionality of the data
while giving a level of shift invariance and captur-
ing the most relevant features within a sentence.
But is that enough to account for a whole order
of magnitude difference in vector size?

Pooling involves aggregation - without too much
simplification this could be summarized down
to averaging text – which means a loss of infor-
mation notably in context as the aggregation is
usually done on a fixed-size window, but also
a loss of positional information as pooling dis-
regard order which is particularly harmful in
our opinion when considering sentence repre-
sentations. Still to this date, a prevalent method
for sentence representation involves calculating
the dimension-wise average of word embeddings
within a given sentence [7]. As this seemed
conceptually wrong to us, we investigated tech-
nologies that would account for both the position
and importance of a word in a sentence and its
meaning in a given context. Signal Processing de-
rived methodologies felt like they could be an
appropriate solution given their ability to decom-
pose a signal and capture the time and space
properties of its component frequencies.

Signal Processing. These methodologies are
very new to the wider NLP community as it is still
unclear how to transform a sentence into a signal
with meaningful transitional properties between
words which would the first step towards using
Signal Processing (SP) tools.

Building on [8]’s observation of the almost
algebraic properties of word embeddings, we rep-
resented sentence as a multi-dimensional signal
where each word representation is a point in
the signal. To exploit the embeddings’ dynamic
characteristics, we explored two variations of tra-
ditional SP tools. We alternatively tried to use
wavelets as there is a great range of related
Python libraries [9] as well as variations of the
Dynamic Mode Decomposition (DMD) algorithm
which is frequently used to decompose time-
evolving systems like vibrations or fluid flows in
fundamental frequencies.
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Based on [7]’s seminal work, we give a brief ex-
planation on how to adapt the DMD algorithm to
a text representation context but do not elaborate
further as the techniques we have explored so far
have not been tractable on our local server. This
is still an ongoing research area at Integrum ESG.

We denote 𝑆𝑁  a sentence composed of 𝑁  words
𝑆𝑁 = [𝑤1, …, 𝑤𝑁 ], where 𝑤𝑖 is a column vector
of size 𝑚 where 𝑚 is the embedding size – 10,000
for TF-IDF for instance.

The sentence 𝑆𝑁  can be written as follows:

⎝
⎜⎜
⎜⎛

𝑤1
1
⋮

𝑤𝑚
1

𝑤1
2
⋮

𝑤𝑚
2

…
⋱
…

𝑤1
𝑁
⋮

𝑤𝑚
𝑁⎠

⎟⎟
⎟⎞

Using Koopman theory, we can express our dy-
namical system in a linear form [10]:

[𝑤1, 𝐴 ⋅ 𝑤1, 𝐴2 ⋅ 𝑤1, …, 𝐴{𝑁−1} ⋅ 𝑤1] (1)

where 𝐴 is the Koopman matrix.

In general, 𝐴 is infinite-dimensional, meaning
that Equation 1 is in fact an approximation. Al-
though there are principled ways of learning such
finite approximations, most available tools are
based on unstructured methods [10] that are not
satisfying at this stage on very large datasets.

Over the upcoming months, we will work on
bridging the gap between theory and tractable
methodologies to obtain sentence level embed-
dings with none of the pooling defects.

2.3 Training and real-world deploy-
ment
Training a classifier in a highly imbalanced sce-
nario comes with a set of challenges especially
when deployed for real-world applications. On
the one hand, the model might be unable to ef-
ficiently detect the minority class as it had very
little material to learn on as well as developing
a bias favouring the majority class. On the other
hand, the predictions’ precision might gradually
decrease with time after deployment if the models
are not properly monitored.

Regarding the model inability to detect the mi-
nority class, there are usually two ways to tackle
this problem. One focuses on the data through re-

sampling methods and the other is focusing on
the model used. We wanted to avoid using resam-
pling as this usually can cause data quality issues,
especially with specialised vocabulary data where
generating a new sample is not as straightforward
as it is for a regression with numerical features
for instance. Under-sampling the Not Relevant to
ESG fragments was not something we wanted
to explore either, given the considerable effort
we had put in building a comprehensive collec-
tion of text fragments. Finally, resampling could
have caused a covariate shift which would have
weakened the model’s ability to generalize to a
real-world environment. Covariate shift happens
when, reusing Section 2.1 notations, 𝑝(𝑥) changes
but 𝑝(𝑦|𝑥) doesn’t; which in other words, means
that the distribution of inputs changes between
train and deployment environment, but the re-
lationship between inputs and outputs does not
change. Our use-case was the perfect grounds
for it, as deployed, our models are making predic-
tions on company reports where most of the text
isn’t about ESG. In this subsection, we explore
some of the methods we used to account for the
imbalance-related training challenges without re-
sampling the training dataset.

The first model element we focused on was our
model’s evaluation metric. In an imbalanced sce-
nario, the widely used accuracy suffers from
severe limitations and can lead to favouring the
majority class. For instance, using accuracy to
evaluate our model would result in building a
dummy model always predicting Not Relevant
to ESG. It is therefore much more valuable to
evaluate the model on the minority class, but eval-
uating it directly against recall would obviously
have a very similar effect as evaluating it against
accuracy - reversed. The 𝐹𝛽 metric is generally
used to deal with such situation as it’s a general-
ization of the precision and recall harmonic mean
with a configurable parameter 𝛽 > 0 to express a
preference for one or the other.

𝐹𝛽 =
(1 + 𝛽2) ⋅ Precision ⋅ Recall
(𝛽2 ⋅ Precision) + Recall

To find the appropriate 𝛽 for our model, we de-
signed a hyperparameter-style search involving
the end-users of the models, Integrum ESG’s re-
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search analysts. We used 𝛽’s ranging from 2 to
10 as objective metrics for an automatic hyperpa-
rameter optimization software. This resulted in 9
sets of models fine-tuned for their respective 𝐹𝛽’s.
We then ran these models on various company
reports and asked the financial analysts to review
the results, as they would for live data before it
is published on our dashboard. The model asso-
ciated with 𝛽 = 8 was the one which simplified
their workflow the most.

Focal Loss. Just like we did for the evaluation
metric, we wanted to explore the ability of loss
functions to handle imbalance and express our
preference for recall. Indeed, commonly used loss
functions are disconnected from the performance
metrics chosen by the ML practitioner, leading
to classifiers being trained to maximize classifica-
tion accuracy with the anticipation that this will
be adequate to produce the desired results for the
actual parameter of interest, the evaluation met-
ric [11]. This was the case for our models as they
were initially trained with a Binary Cross Entropy
(BCE) loss - a traditional information theory tool
which evaluate how accurate the model is when
making a prediction. It would be desirable to use
the 𝐹𝛽 metric as a loss function but its non-dif-
ferentiability as well as the scalability limitations
of existing approaches for optimizing potentially
differentiable close alternatives usually make this
impossible in practice.

Computer Vision (CV) has been an interesting
source of inspiration for NLP research over the
past decade. Object detection is one of the most
common CV tasks, it’s usually highly imbalanced
- think about a surveillance system in an airport
looking for people on the Interpol most wanted
list, most passengers aren’t criminals. The tradi-
tional approach to constructing a model for this
task involves building a 2-stage detector, a first
model generates a sparse set of candidate propos-
als for a second more subtle model. This all feels
very close to what we did in Section 2.2.

Recently, CV researchers trying to shift the par-
adigm from a 2-stage detector to a single stage
detector obtained benchmark-leading results de-
signing the Focal Loss [12]. The underlying
principle is straightforward, the loss builds on the

BCE and focuses training on a small subset of
challenging data points while disregarding most
of the easier examples from the majority class.

Below we briefly introduce how the Focal Loss
differs from the BCE.

In its simplest form, the BCE is expressed as fol-
lows:

BCE (𝑝𝑡) = − log(𝑝𝑡)

where 𝑝𝑡 is the model predicted probability when
𝑦∗ = 1 using the same notations as in Section 2.1
and 1 − 𝑝 otherwise. The Focal Loss extends
the BCE concepts by adding a modulating fac-
tor (1 − 𝑝𝑡)

𝛾  which dynamically adjusts the loss
contribution based on the predicted probability,
effectively giving more attention to challenging
examples (low 𝑝𝑡) and reducing the impact of
well-classified examples (high 𝑝𝑡):

Focal Loss (𝑝𝑡) = −(1 − 𝑝𝑡)
𝛾 ⋅ log(𝑝𝑡)

Adapting the Focal Loss to our ESG classifier got
us a sensible increase in recall and precision and
is what yielded our best results so far. Our aver-
age recall is now 0.98 with a precision of 0.71. It
is worth noting that in [12], the use of the Focal
Loss allows them to shift from a 2-stage detector
to a single stage detector which was not the case
for us. We hope that coupling Signal Processing as
described in Section 2.2 and the Focal Loss should
allow us to introduce a single step ESG classifier.

3 Conclusion
In this study, we introduced, what we believe
to be the first ESG relevancy classifier and
demonstrated the feasibility of utilizing Machine
Learning to extract and meaningfully compare
Environmental, Social, and Governance data from
company reports. The models currently deployed
on our proprietary dashboard achieve a recall of
0.98 and a precision of 0.71 on average while re-
maining fast and computationally efficient.

We showed how building an efficient ESG rele-
vancy classifier was dependent on handling two
specific challenges: the imbalanced data and the
uneven costs of False Negative and False Positive.
To tackle these issues, we focused on three build-
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ing blocks: data, text representation and learning
objective optimization.

Firstly, we shifted paradigms from a model-cen-
tric approach to a data-centric approach using
Confident Learning. We demonstrated that im-
proving models is not the only way to get
better performance. Secondly, we evidenced the
impressive efficacy of retrieval technology in a
recall-focused situation compared to more mod-
ern technologies and introduced a voting scheme
combining TF-IDF retrieval abilities with Bi-
LSTMs’ context-awareness. Finally, we addressed
the usual models’ inability to detect the minority
class in imbalanced scenarios by bridging the dis-
connect between evaluation metrics and objective
functions.
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